Metaheuristic Procedures for Training Neutral Networks için kapak resmi
Başlık:
Metaheuristic Procedures for Training Neutral Networks
Dil:
English
ISBN:
9780387334165
Yayın Bilgileri:
Boston, MA : Springer US, 2006.
Fiziksel Tanımlama:
XII, 252 p. 65 illus. online resource.
Seri:
Operations Research/Computer Science Interfaces Series, 36
İçerik:
Classical Training Methods -- Local Search Based Methods -- Simulated Annealing -- Tabu Search -- Variable Neighbourhood Search -- Population Based Methods -- Estimation of Distribution Algorithms -- Genetic Algorithms -- Scatter Search -- Other Advanced Methods -- Ant Colony Optimization -- Cooperative Coevolutionary Methods -- Greedy Randomized Adaptive Search Procedures -- Memetic Algorithms.
Özet:
Metaheuristic Procedures For Training Neural Networks provides successful implementations of metaheuristic methods for neural network training. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Apart from Chapter 1, which reviews classical training methods, the chapters are divided into three main categories. The first one is devoted to local search based methods, including Simulated Annealing, Tabu Search, and Variable Neighborhood Search. The second part of the book presents population based methods, such as Estimation Distribution algorithms, Scatter Search, and Genetic Algorithms. The third part covers other advanced techniques, such as Ant Colony Optimization, Co-evolutionary methods, GRASP, and Memetic algorithms. Overall, the book's objective is engineered to provide a broad coverage of the concepts, methods, and tools of this important area of ANNs within the realm of continuous optimization.

Mevcut:*

Materyal Türü
Demirbaş Numarası
Yer Numarası
Raf Konumu
Mevcut Konumu
Materyal Istek
E-Kitap 1815825-1001 HD30.23 SPRINGER E-Kitap Koleksiyonu
Arıyor...

On Order

Özet

Özet

This book provides successful implementations of metaheuristic methods for neural network training. It is the first book to achieve this objective. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Overall, the book's aim is to provide a broad coverage of the concepts, methods, and tools of the important area of ANNs within the realm of continuous optimization.