Tensile Fracturing in Rocks Tectonofractographic and Electromagnetic Radiation Methods için kapak resmi
Tensile Fracturing in Rocks Tectonofractographic and Electromagnetic Radiation Methods
Yayın Bilgileri:
Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Fiziksel Tanımlama:
XIV, 570 p. 302 illus. online resource.
From the contents: Fracture Physics: The Griffith Criterion; Nucleation; Linear Elastic Fracture Mechanisms; Dynamic Fracture; Subcritical Cracking -- Fracture Geology: Fractography and Tectonofractography; Uplift, Post-Uplift, Neotectonic and Surface Joints; Primary and Secondary Fractures -- Four Fracture Provinces in Sedimentary Rocks: The Appalachian Plateau; The Bristol Channel Basin; Zion National Park; Beer-Sheva Syncline, Israel; Comparison of Unrelated Fracture Provinces -- Jointing in Granites: The Cloos Model; Fracture in Granites from the North Bohemian Massif in the Lusatian Granodiorite Complex and the Erzgebirge; Joints in Granites from the South Bohemian Pluton; Joints in Granites from the Sierra Nevada Batholith in California; Fractographies - Quasi-Static and Dynamic Fractures; Comparative Jointing; Analysis of Fracture Velocity versus Stress Intensity Factor in the Borsov Joints; Velocity and Stress Intensity Manifestations of Fracture Propagation in Granites; New Fracture Areas in the Enchelon and Hackle Fringes on Joint Surfaces; The Index of Hackle Raggedness on Joint-Fringes; Drilling in-situ Fracture from the Rock -- Electromagnetic Radiation Induced in Fractured Materials: History of EMR Research; The EMR Model; EMR Pulses Induced by Rock Fracture; EMR and Material Elasticity; EMR and Percussion Drilling; EMR Detection; EMR Induced by Underground Rocks under Stress -- Assorted Problems in Fracture Geology: Regional Jointing; Systematic Joints; Joint-Length Distribution; Paleo-Fracture Stress; Fault Termination Zone; Fault-Joint Relationships; A New Fringe Characterization and Analysis.
‘Tensile Fracturing in Rocks’ presents field observations on fracturing of sedim- tary rocks and granite outcrops from various provinces in three continents. It also combines results of recent experiments conducted at different laboratories around the world with current theories on fracturing. In treating faults, this book limits itself to faults that are associated with joint sets produced by definable causes and occasi- ally to cases where interaction between the two types of fracture – faults and joints – is not clear. The book’s subject matter is divided over six chapters, which are briefly described below. Chapter 1 summarizes current key concepts in fracture physics. It starts with a pr- entation of the elastic theory of fracture, and concentrates on the results of linear el- tic fracture mechanics. The chapter touches also upon other fracture properties, e.g., crack nucleation, dynamic fracturing and slow fracturing processes. Nucleation is - dressed by statistical mechanics methods incorporating modern approaches of th- mal and fiber bundle processes. The analyses of dynamic fracturing and slow fract- ing focus on the differences, as compared to the linear elastic approach. The cont- versy in interpreting experimental dynamic results is highlighted, as are the surface morphology patterns that emerge in fracturing and the non-Griffith crack extension criterion in very slow fracturing processes.


Materyal Türü
Demirbaş Numarası
Yer Numarası
Raf Konumu
Mevcut Konumu
Materyal Istek
E-Kitap 1818158-1001 QE601 -613.5 SPRINGER E-Kitap Koleksiyonu

On Order