Numerical Methods for General and Structured Eigenvalue Problems için kapak resmi
Numerical Methods for General and Structured Eigenvalue Problems
Yayın Bilgileri:
Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Fiziksel Tanımlama:
XIV, 258 p. 32 illus. online resource.
Lecture Notes in Computational Science and Engineering, 46
The QR Algorithm -- The QZ Algorithm -- The Krylov-Schur Algorithm -- Structured Eigenvalue Problems -- Background in Control Theory Structured Eigenvalue Problems -- Software.
The purpose of this book is to describe recent developments in solving eig- value problems, in particular with respect to the QR and QZ algorithms as well as structured matrices. Outline Mathematically speaking, the eigenvalues of a square matrix A are the roots of its characteristic polynomial det(A??I). An invariant subspace is a linear subspace that stays invariant under the action of A. In realistic applications, it usually takes a long process of simpli?cations, linearizations and discreti- tions before one comes up with the problem of computing the eigenvalues of a matrix. In some cases, the eigenvalues have an intrinsic meaning, e.g., for the expected long-time behavior of a dynamical system; in others they are just meaningless intermediate values of a computational method. The same applies to invariant subspaces, which for example can describe sets of initial states for which a dynamical system produces exponentially decaying states. Computing eigenvalues has a long history, dating back to at least 1846 when Jacobi [172] wrote his famous paper on solving symmetric eigenvalue problems. Detailed historical accounts of this subject can be found in two papers by Golub and van der Vorst [140, 327].


Materyal Türü
Demirbaş Numarası
Yer Numarası
Raf Konumu
Mevcut Konumu
Materyal Istek
E-Kitap 1818542-1001 QA71 -90 SPRINGER E-Kitap Koleksiyonu

On Order



This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.